evaluation of γ-al2o3/n-decane nanofluid performance in shell and tube heat recovery exchanger in a biomass heating plant
نویسندگان
چکیده
the performance of a γ-al 2 o 3 /n-decane nanofluid shell-and-tube heat exchanger in a biomass heating plant is analyzed to specify the optimum condition based on the maximum heat transfer rate and performance index for wide range of nanoparticle volume fraction (0–7%). compared with pure n-decane, the obtained results in this research show that by using γ-al 2 o 3 /n-decane nanofluid as coolant at optimum values of particle volume concentration for maximum heat transfer rate (ϕ=0.021) and for maximum performance index (ϕ=0.006), the heat transfer rate and pumping power increased by 10.84%, 13.18% and 6.72%, 2.3%, respectively. increasing particles concentration raises the fluid viscosity, decreases the reynolds number and consequently decreases the heat transfer coefficient. as a result, determining the optimum value of the particle volume fraction of nanofluid as the working fluid, can improve the performance of shell-and-tube heat exchangers.
منابع مشابه
A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger
The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were ...
متن کاملEconomic Optimization of Shell and Tube Heat Exchanger Using Nanofluid
Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger p...
متن کاملEffect of baffle oientation on shell tube heat exchanger performance
In this paper, fluid flow and heat transfer in the laboratory (small size) shell tube heat exchanger are analysed by computational fluid dynamic software. In this type of shell tube heat exchanger baffles with different angles of rotation: 00 (horizontal segmental baffle), 150 (from horizontal), 300, 450, 600, 750, 900 (vertical segmental baffle) is used. Effect of baffle orientation on shell t...
متن کاملExperimental investigation on the heat transfer performance and pressure drop characteristics of γ-Al2O3/water nanofluid in a double tube counter flow heat exchanger
In this paper, overall heat transfer coefficient and friction factor of water based γ-Al2O3 nanofluid in a double tube counter flow heat exchanger have been measured experimentally under turbulent flow condition. For better dispersion of γ-Al2O3 nanoparticles in distilled water, magnetic stirrer and ultrasonic vibrator (with a power of 240 kW and frequency of 35 kHz) were implemented. The stabi...
متن کاملExperimental and CFD Study of the Tube Configuration Effect on the Shell-Side Thermal Performance in a Shell and Helically Coiled Tube Heat Exchanger
"> Despite numerous studies of shell and helically coiled tube heat exchangers, a few investigations on the heat transfer and flow characteristic consider the geometrical <span style="font-size: 9pt; col...
متن کاملa numerical investigation of γ-al2o3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger
the effect of γ-al2o3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-al2o3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. since the properties of γ-al2o3-water nanofluids were variable, they were ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of advanced design and manufacturing technologyجلد ۹، شماره ۲، صفحات ۰-۰
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023